A Computer Aided Design Methodology
For Printed Circuit Boards

Linda G. Bushnell and Vason P. Srini

Computer Science Division, EECS

University of California, Berkeley, CA 94720

ABSTRACT

We present a design methodology for realizing VLSI printed circuit board (PCB) designs using
Computer Aided Design (CAD) tools on powerful workstations. The workstation and CAD tools allow
one to create a gate-level design using TTL parts and interconnecting wires, simulate the functionality
and timing of the gate-level design, package the design’s TTL parts into PCB parts, place and route the
PCB, create manufacturing data, and simulate the design at the board-level. A design example, the
VLSI-PLM PC Board being developed at the University of California at Berkeley, is given to illustrate
this procedure. The VLSI-PLM PC Board is a processor board for the VLSI-PLM Chip [SRINI], which is

a high performance CMOS processor for executing computer programs written in the Prolog language.



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JAN 1989 2. REPORT TYPE 00-00-1989 to 00-00-1989
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Computer Aided Design M ethodology For Printed Circuit Boards £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Berkeley,Department of Electrical REPORT NUMBER
Engineering and Computer Sciences,Berkeley,CA,94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

We present a design methodology for realizing VLS| printed circuit board (PCB) designs using Computer
Aided Design (CAD) tools on power ful workstations. The workstation and CAD tools allow oneto create a
gate-level design using TTL partsand inter connecting wires, smulate the functionality and timing of the
gate-level design, packagethedesign’s TTL partsinto PCB parts, place and route the PCB, create
manufacturing data, and simulate the design at the boar d-level. A design example, the VLSI-PLM PC
Board being developed at the University of California at Berkeley, isgiven toillustrate this procedure. The
VLSI-PLM PC Board isa processor board for the VLSI-PLM Chip [SRINI], which isa high performance
CMOS processor for executing computer programswritten in the Prolog language.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 38
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



-2

Table of Contents
1. Introduction
2. Problem Scope
3. The Design Methodology
3.1 Schematic Capture
3.2 Gate-level Simulation
3.3 Packaging the Parts
3.4 Placing the Parts
3.5 Routing the Board
3.6 Producing Manufacturing Data
3.7 Board-level Simulation
4. Example: VLSI-PLM PC Board
4.1 Display Registers
4.2 Decoder
43 DB25
4.4 Edge Connectors
4.5 DIN Connectors
4.6 VLSI-PLM Chip
4.7 The Interface Logic
4.8 Layout and Routing
4.9 Manufacturing Data
4.10 Board-level Simulation
5. Problems and Limitations
6. Conclusion
Acknowledgement
References

Appendix



-3-

List of Figures
Figure 1 Sample Symed Drawing: The D Flip-Flop
Figure 2 Sample Neted Drawing: The D Flip-Flop
Figure 3 Hierarchical Designing
Figure 4 Gate-level Design Procedure
Figure 5 Board-level Design Procedure
Figure 6 VLSI-PLM PC Board Symbol
Figure 7 VLSI-PLM PC Board Schematic
Figure 8 Display Registers Symbol
Figure 9 Display Registers Schematic
Figure 10 Decoder Symbol
Figure 11 Decoder Schematic
Figure 12 DB25 Symbol
Figure 13 Edge Connector Symbol
Figure 14 DIN Connector Symbol
Figure 15 VLSI-PLM Chip Symbol
Figure 16 Interface Logic Symbol
Figure 17 Interface Logic Schematic
Figure 18 VLSI-PLM PC Board Layout
Figure 19 Routed VLSI-PLM PC Board
Figure 20 VLSI-PLM PC Board Artwork 1
Figure 21 VLSI-PLM PC Board Artwork 2
Figure 22 VLSI-PLM PC Board Artwork 3
Figure 23 VLSI-PLM PC Board Fabrication Drawing
Figure 24 VLSI-PLM PC Board Assembly Drawing



-4-

1. Introduction

In the area of computer architecture, one not only wants to develop high performance architectures,
but also to have an efficient and accurate development cycle. In order to guarantee a flawless PCB design
before fabrication, the current trend is to use available software packages on computer workstations. By
using these CAD tools, the designer can create the computer architecture gate-level design using TTL
gates and interconnecting wires. One can quickly verify the design by performing gate-level functional
and timing simulations. It is at this step where most of the design flaws are found and corrected. The
gate-level design can then be developed into a board-level design through a series of steps involving
packaging the TTL gates into PCB chips, placing these chips on the PCB, and routing the board. The
designed PCB can then be verified with simulations. The final product of this design process is the
manufacturing data, e.g., drilling and milling information, Gerber artwork, and assembly and fabrication
drawings. This manufacturing data can be directly used to fabricate a PCB. Through each step, the

designer can check and correct any error easily with the CAD tools.

This paper covers two main topics. First we discuss the procedure of realizing PCB designs using
Mentor Graphics CAD tools on Apollo workstations. The seven major steps in this procedure are
presented in detail. The second topic is an illustration of this design process. We present a complete
example: the VLSI-PLM PC Board currently under development at the University of California at
Berkeley. The VLSI-PLM PC Board is a processor board for the VLSI-PLM Chip [SRINIT], which is a

high performance CMOS processor for the Prolog computer language.

Section 2 discusses the statement of the problem. Section 3 provides a detailed description of the
method of realizing a board using CAD tools. Section 4 presents an actual PCB designed using this
methodology. Section S discusses the problems encountered in the design procedures and the limitations

of the CAD tools. Section 6 summarizes with a conclusion.

2. Problem Scope

When one has an idea for a PCB design, the corresponding gate-level design can be drafted with
pencil and paper. This drafted design can then be fabricated into a wire-wrapped board. However, it is
more efficient to create both the gate-level and board-level designs on a computer workstation by using

CAD tools. All of the design modifications, simulations, and verifications can be performed more



-5.

efficiently on computers than on wire-wrapped boards. The final product of using the CAD tools, the

manufacturing data, can then be used to fabricate a PCB.

The first step in the procedure to design a PCB using CAD tools is to put the gate-level schematic
on the computer by using standard TTL library parts, custom designed parts, and interconnecting wires.
This design schematic can then be checked for errors and corrected. Once the design schematics are
flawless, a simulation can be performed to verify the design functionality and timing. If any problem is
found, it is easy to modify the original design schematics and re-run the simulations. By using this

iterative procedure, one can produce an accurate gate-level design in a relatively short amount of time.

The next task is to package the TTL gates in the gate-level schematic into PCB chips that can be
used on a software modeled PCB. In this step, the design process can be shortened by using standard
PCB geometries provided in the libraries of the CAD software. Custom-made geometries can aiso be

easily constructed.

These packaged parts are then placed on the PCB by using the interactive and automatic PCB chip
placing CAD tools. The placement can also be checked and improved. The next step is to route the
board by using the automatic CAD routers. Some interactive routing may have to be done for
complicated designs.

The manufacturing data can be created and sent out for fabrication. The CAD tool for producing
manufacturing data allows the designer to produce drilling. milling, Gerber artwork, and assembly and
fabrication drawings.

The final step in the design process is to perform board-level simulations. These simulation results
can be compared with the gate-level simulation results and necessary design changes can be made so that

they will agree.

3. The Design Methodology

In this section, we describe in detail a step-by-step procedure to realize complex PCB designs.
There are seven major steps in this procedure. The CAD tools mentioned are from Mentor Graphics
(MG) version 6.1 software [MENTOR], and are installed on Apollo workstations, under version 9.7.0.4

Aegis operating system.



3.1 Schematic Capture

For the first step in the design process, the formulated design is drawn on the computer workstation
using the MG Idea Station schematic capture tools Neted and Symed. Neted allows a multi-level
hierarchical design to be drawn on a schematic sheet using TTL standard parts, custom-made parts, and
interconnecting wires. The interconnecting wires are also called "nets”, for which this tool is named. A
hierarchical design implies a three-dimensional drawing. Symed is used to make the custom parts’
symbols and any component symbols that will be placed on the Neted schematic sheets of the design.
The symbols usually have their own schematic sheets (made with Neted) underneath them. In this step, a
multi-level hierarchical design can be made by using a top-down approach. The first step is to draw and
edit a symbol for the entire part to be designed by using Symed. For example, Figure I [MENTOR]
shows the MG symbol for a D Flip-Flop.

)/REGD. BIN (L
T REGD
J
0 ¢ Q—mm
- B
'+T>CI_K
Q B

B

—CLR

Figure 1 Sample Symed Drawing: The D Flip-Flop

Next, one makes a schematic sheet inside of this symbol, by using Neted, where the design
schematic can be drawn. On this top-level sheet, TTL primitive component symbols and custom-made
symbols can be connected using wires. The primitive component symbols are provided by the MG

library. Figure 2 [MENTOR] shows the MG Neted schematic for a D Flip-Flop.



-7-

PRED—I_—LD
(]
0
CLRC—T— )5 : - Q
)] ¢} 8
—
G L] 0B
CLK> 3 ° e
3]
D>—— 2

Figure 2 Sample Neted Drawing: The D Flip-Flop

The non-primitive symbols on this top-level sheet may have schematic sheets inside of them,
thereby creating a multi-level hierarchical design. Figure 3 [MENTOR] presents the concept of a
hierarchical design. The design schematics must be checked for error upon completion. This checking of
the design is performed automatically by the Neted tool. All errors have to be resolved before continuing

- in the design process.

SCHEMATIC

PRIMITIVE
COMPONENT
SYMBOL

FLIP-FLOP
SYMBOL

FLIP-FLOP
SCHEMATIC
SHEET

Figure 3 Hierarchical Designing



3.2 Gate-level Simulation

After completing the design schematics and checking them over, the next step is to transform the
multi-level hierarchical design into a flat array of primitive elements consisting only of basic cells and
wires. A basic cell is one which has associated with it a computer program describing its behavior, called
a Behavior Language Model (BLM). A BLM is written in C or Pascal and models the functional
behavior of a digital component. The transformation is easily accomplished by the MG tool Expand.
Using this expanded design, the MG logic simulator tool QuickSim interactively allows for the
verification of the functionality and timing of the design. The designer can establish a design cycle of
applying stimulus to the design, running the simulation, analyzing the resuits, and then modifying the
design based on these results. This iterative process, shown in Figure 4, will guarantee an accurate gate-

level design.

A4
4 »| NETED/SYMED |«
S S
5 3
- 21
g y ADD -
2 EXPAND » TIMING 3
g DELAYS a
- @
§ l + o
S QUICKSIM QuicksiM 1
functional timing
v

Flawless 'design schematic

Figure 4 Gate-level Design Procedure

Before invoking QuickSim, macro files can be made to prepare an environment for testing and tell
the simulator what tests to run. These macro files contain QuickSim commands that set signals to
specified values at certain clock times. Many simulation runs can be incorporated into one macro file so
that the part can be tested completely. This macro file can then be called from within QuickSim and the

simulation will be done automatically. The output is an ascii file that contains the test pattern results.



-9.

For the functional simulations, QuickSim is used directly after Expand and the schematic capture.
However, the procedure is a little more complicated for the timing simulations. To get a more accurate
simulation of the effects of net delays in the design, the designer must add delays to the expanded design
schematic. Based on the BLMs of the basic cells, a MG program automatically determines the
capacitance and resistor values and sets up delay values for the various nodes and interconnecting wires.
The simulation is then run using QuickSim, giving more realistic results. Please see the discussion in the

section on board-level simulation for more detail.

3.3 Packaging the Parts

For this section through section 3.7 please reference Figure 5 [MENTOR] to see the iterative
procedure for creating PCBs. With a gate-level design schematic of correct functionality and timing, one
can package the TTL gates into PCB chips to be placed on a PCB model. There are three steps to
accomplish this. The first step is to eliminate the hierarchy in the schematic sheets to create a flattened
version of the gate-level design, using the MG Board Station tool Expand PCB. This tool is similar to
Expand, but Expand_PCB also creates a logic database to be used by the MG PCB tools. This logic

database contains the connectivity information extracted from the design schematic sheets.



-10-

;

3 'LIBRARIAN

g .......................

| =4

< — R EEEE

S (PCBLIY

a “Geometry::
--Libraries.

P S e P

(-Gerb er:.)

“Assembly.

“Drawings:;

Figure 5 Board-level Design Procedure

The second step is to define and modify board-level parts for the design. The MG Board Station
tool Librarian is used to build library parts such as component geometries, logos, drawings, and pad-
stacks. It also is used to create catalog and mapping files for the component geometry parts. By using
Librarian, one can also group together the parts necessary for the design into a data file (parts file) to be
used in the PCB layout. These component geometries are used to represent the actual physical
components of the design. The catalog and mapping files show the connection between symbol pins on
the design schematic and PCB geometry component pins. In addition, the catalog and mapping files
show which gates and pins can be swapped. Any PCB parts needed for the design that are not in the

software libraries must be created with Librarian.



-11 -

Eight types of parts can be made using Librarian: (1) artwork stack-ups, which associate the data
created on a board layer to a sheet of film; (2) PC Boards; (3) component geometries; (4) mechanical or
assembly drawings; (5) manufacturing panels, which show the arrangement for fabricating more than one
board part per manufacturing operation; (6) pin pad-stacks, which describe the connection of a component
pin on each PCB layer; (7) via pad-stacks, which are plated through-holes on each PCB layer; and ®
generic parts.

The third step is to assign symbols from the design schematic to PCB components by using the MG
Board Station tool Package. These PCB components are to be placed on the PCB model. The packaging
procedure can be done automatically or interactively. Package also checks the catalog and mapping files

for errors, which must be corrected before proceeding to the board layout.

3.4 Placing the Parts

At this stage in the design methodology, the design has been transformed into many PCB chips.
These components can be placed on the top and/or bottom surfaces of the PCB by using the MG Board
Station tool Layout. One can place certain parts first then let the automatic layout tool place the rest. The
placement of the chips on the PCB can be improved by a built-in algorithm in Layout. The placement
must also be checked when completed. The designer can choose the number of signal and power layers

for the layout and routing of the board.

3.5 Routing the Board

When all of the components are placed on the PCB, the next step is to route the wire connections
between these components, which is performed by using Layout. This procedure can aiso be done
automatically by a built-in routing algorithm or interactively. The best procedure is to route with the
following built-in algorithms: (1) Pattern for eight passes, (2) Auto for five passes, (3) Manufacturing for
two passes, and (4) Auto for five more passes. If the board is not 100% routed after these twenty passes,
the remaining wires must be manually routed by the designer. One can try to use the automatic router
again to complete the few remaining wires, but it is much quicker to route them yourself. After having a
completely routed board, the wires can be checked by a built-in checking algorithm. Any error must be
fixed by the designer.



-12-

3.6 Producing Manufacturing Data

The last step in the CAD procedure for designing a PCB is to generate the manufacturing data. The
MG Board Station tool Fablink allows one to produce photoplotter data (Gerber artwork), drilling and
milling data, and fabrication and assembly drawings. The output from this step can be used to
manufacture a PCB. First the designer must define the aperture settings. The shape (circle or rectangle),
diameter, power, and type (flash, trace, or both) must be specified. Next the Gerber artwork is created
automatically. Each artwork shows one layer of the PCB. One artwork drawing is of the silk screen layer
of the PCB, while the additional artwork drawings correspond to the signal and power layers. The drill
magazine information must be entered by the designer. The drill size, upper bound, lower bound, and
whether or not it is to be plated must be specified. The drill output can then be created automatically.
This drill representation can be viewed and edited. Most of the milling data must be created by the
designer. The assembly and fabrication drawings are made automatically and the designer can edit them

to add text and dimensions.

3.7 Board-level Simulation

In order to ensure that the functionality and timing of the PCB is correct, the designer must perform
simulations at the board-level. The design file must be back-annotated to allow for a more accurate
simulation of the effects of the net delays in the board. Add Delay PCB is the MG software tool that
performs the delay annotation. This program modifies the rise and fall times in the design specifications
to reflect any changes in delay due to net routing and operating voltage and temperature. It also refiects

the designer’s choice of best, nominal, and worst case analysis.

Add Delay PCB will calculate the delay for the following cases: (1) fanout only delay, in which
only loading capacitances are added to the net delays, (2) layout only delay, in which only the delay due
to net length is added to the net delays, (3) expected layout delay, in which the expected delay due to
layout is calculated (based on the net loading) and added to the net delays, (4) fanout and layout delay, in
which both the layout and fanout delays are calculated and added to the net delays, and (5) fanout and
expected layout delay, in which the expected layout and fanout delays are calculated and added to the net
delays. The delay algorithm is designed for two layer metal CMOS gate arrays and considers capacitance

delays due to fanout and interconnective distances. The algorithm calculates delays on a per net basis in



-13-

which specific pin-to-pin delays are not considered. The values for the resistances and capacitances are
estimated by the algorithm. However, real values will be used after the actual wire-wrapped board is
completed. After inserting the appropriate delays, the tool QuickSim can be used to simulate the design.
The board-level simulation results should be compared to the gate-level simulation results. The designer

can then make necessary design modifications if any discrepancies are found.

4. Example: VLSI-PLM PC Board

We now present a complete example: the VLSI-PLM PC Board under development at the
University of California at Berkeley. There are two purposes of this example for this paper. The first is
to show an actual application of the CAD methodology described above. The second purpose it to
describe the design of the VLSI-PLM PC board, a processor board for the VLSI-PLM Chip. The Chip is
a CMOS processor for the Prolog computer language. The board consists of the VLSI-PLM Chip,
Display Registers, Decoder, DB25 Connector, three 3x32 Edge Connectors, two 3x32 DIN Connectors,
and a part for the interface logic. The PCB measures 36.6 cm by 21.9 cm and was designed after a VME
packaging panel. There are a total of 106 PCB chips that cover the entire board. The Symed and Neted
drawings for the whole board are in the appendix in Figures 6 and 7, respectively. The board is designed

to be used in a Sun system or as a stand-alone, operating at a range of 4 to 20 MHz.

4.1 Display Registers

Display Registers will be used to test the PCB after fabrication. This part contains the logic that
allows certain signals to be viewed by the test engineer on the Digital Analysis System (DAS). These
signals are MEMDATBUS.P(31:0) and MARBUS.P(27:0) which are connected to the VLSI-PLM Chip
and come from the interface logic. The schematic drawings are shown in Figures 8 and 9 (appendix).

This part was packaged into many MG library PCB geometries (DIPs) for the layout.

4.2 Decoder

Decoder will also be used in the testing of the fabricated VLSI-PLM PC Board. This part contains
the logic that translates the tester panel signals into signals for the VLSI-PLM Chip and vice versa.

Specifically, the tester signals are the read, write, address select, enable, and 8-bit data line. Figures 10



-14 -

and 11 (appendix) show the schematic drawings for Decoder. This block was also packaged into many
MG library PCB parts.

43 DB25

The DB25 is a 25-pin connector that connects the interface board to the tester panel. This will
allow for the testing of the fabricated VLSI-PLM PC Board. See Figure 12 (appendix) for the symbol of
the DB25 connector. The PCB geometry for the DB25 connector was made with Librarian by taking a

DIP20 geometry from the MG library, adding five more pins, and redrawing the body.

4.4 Edge Connectors

The three 3x32 Edge Connectors (Figure 13 in appendix) are used to attach the fabricated VLSI-
PLM PC Board to a backplane, if desired. The geometry for the Edge Connectors was provided by the
MG library. Each PCB geometry contains three rows of 32 pins for a total of 96 pins.

4.5 DIN Connectors

The two DIN Connectors (Figure 14 in appendix) are similarly used for attaching the fabricated
VLSI-PLM PC Board to the backplane. The DIN Connectors contain 96 pins. The PCB geometry for the

DIN Connectors was copied from the Edge Connector geometry.

4.6 VLSI-PLM Chip

A detailed description of this chip can be found in [SRINI]. The symbol is shown in Figure 15 in
the appendix. This chip is a high performance VLSI CMOS 32-bit microprocessor that executes Prolog
programs with high regularity, low power dissipation, and a small instruction set. The chip has 120 pins
and is 11 mm by 9.5 mm. The design of the VLSI-PLM PC Board only uses the symbol for its design.
The underlying logic for the chip has yet to be made into a BLM, where a simplified version of the logic
is encoded in the computer language Pascal. In this sense, the chip acts like a connector. The geometry
for the VLSI-PLM Chip was made to the specifications of NTK division of NGK Spark Plug Company.
This geometry is a 168 terminal LSI pin grid array, but only 120 pins are used by the chip, including 18

power and ground.



-15-

4.7 The Interface Logic

The core of the design of the VLSI-PLM PC Board is the interface logic, which prepares most of the
important signals for the VLSI-PLM Chip. The interface logic schematics are shown in Figures 16 and
17 in the appendix. This is a multi-level hierarchical design. This logic was packaged into many MG
supplied PCB parts. We will briefly describe the design and construction of the interface logic, also
known as the VLSI-PLM Board (VPB). See reference [Nguyen] for a detailed description. The main
purpose of the VLSI-PLM Board is to demonstrate the performance of the VLSI-PLM Chip.

The VPB design contains twelve sub-blocks, which are as follows: (1) Clock Generator, (2)
Pushbuttons, (3) Toggle, (4) Atomicb, (5) Mirsignals, (6) Marbuff, (7) Passmclk, (8) Opcodebus, €))]
Forceaddr, (10) Xcver, (11) Memdatbus, and (12) the VLSI-PLM Chip. The VPB was designed using the
above mentioned design methodology with the Mentor Graphics IDEA Station tools on Apollo
workstations. The VPB was created as a multi-level hierarchical design, allowing one to better

understand the functionality.

After all of the simulations were performed, the VPB was proven to be correct with respect to
functional and timing specifications. The VPB was actually wire-wrapped by the Electronics Support
Group of the Electrical Engineering and Computer Science Department (EECS) at the University of
California at Berkeley. A micro-processor-controlled tester console was also developed to automate
some of the testing, provide inputs to the board’s switches, display desired results, and provide the board
with desired constants. The wire-wrapped board was designed to be used in a Sun system or as a stand-
alone panel, operating at a frequency of 4 to 20 MHz. The total wire-wrapped part occupies 18 cm by 22
cm in a board 40 cm by 36 cm, with a total of 95 IC chips including the VLSI-PLM Chip. This wire-
wrapped board was tested using the Digital Analysis System. The testing consisted of checking for
connectivity and functionality. The test results verified the simulations of the computer-designed

interface logic.

4.8 Layout and Routing

The interface board layout is shown in Figure 18, and the routed board is shown in Figure 19, both
in the appendix. The geometries for the various parts in this design can be seen in these figures. The

three 3x32 Edge Connectors are along the top, the DB25 Connector is in the left bottom corner, and the



-16 -

two DIN Connectors are to the right of the DB25. The VLSI-PLM Chip is placed above the DIN
Connectors. The various DIP parts are the rest of the design’s logic. The board outline geometry was
designed using Libfarian as a VME packaging panel part no. 8139-VME922-02X with dimensions 36.6
cm by 21.9 cm. Eight signal layers, one silk-screen layer, and eight power layers were used to layout and
route the board. For the layout of the VLSI-PLM PCB, the three Edge Connectors, two DIN Connectors,
DB25, and the VLSI-PLM Chip were placed first, then the rest of the components were placed
automatically. When the layout was finished, we made one pass through the improve placement

algorithm on the automatically placed parts.

After completing a good layout, the board was automatically routed with three different algorithms
with a total of 20 passes. We used the Pattern algorithm eight times, the Auto algorithm five times, the
Manufacturing algorithm two times, followed by the Auto algorithm again for five passes. The board has
a total of 106 PCB parts, 4259 segments, 152 vias, no fill areas, and 405 nets which covering the entire
board.

4.9 Manufacturing Data

The Gerber artwork was created by first defining an aperture settings for the artwork. The aperture
settings will be used by the photoplotter in the fabrication of the VLSI-PLM PC Board. There were
seventeen artwork layers, corresponding to the layout layers, produced automatically by the CAD
software. One is able to view, check, and possibly edit each artwork layer. A sample of the Gerber
artwork produced is shown in Figures 20-22 in the appendix. The first figure is of the silk-screen layer.
Figures 21 and 22 are of the first and second signal layers, respectively.

The fabrication and assembly drawings are in the appendix in Figures 23 and 24, respectively.
These drawings were made by first specifying the drill size for the design. For this design we used a
plated drill with a hole size of 0.0280. The drill was produced automatically. The assembly drawing was
then generated automatically and the dimensions and comments were added manually. The fabrication
drawing was also made automatically, with the drill table, comments, and dimensions being added by the
designer. For the fabrication drawing, one has the option to make the drill holes visible, which was done
for this design. No milling data was created. This is the final product that will be used to fabricate the
VLSI-PLM PC Board.



-17-

4.10 Board-level Simulation

No board-level simulations were performed on the VLSI-PLM PC Board since we have not yet
written a BLM for the VLSI-PLM Chip. We have to come up with a simplified model of the Chip, for the

actual logic would be too complicated for a BLM.

5. Problems and Limitations

In this section we will describe some of the problems encountered during the design process and the
limitations of the CAD tools. One problem was learning how to use the Mentor Graphics Boardstation
tools from the documentation. It took a long time to learn that the "parts” file used in Boardstation must
be made with Librarian. We used the MG hot-line often for help in many software problems that could
not be solved by referring to the documentation. Another time consuming task was to make the mapping
files (used in Package) from all of the existing component libraries (F, LS, general). Most of the mapping
files had to be edited for the correct information. The catalog files also had to be fixed to work correctly
in Package.

One limitation to creating a design using the MG tools is that often a part needed for schematics
does not exist in the MG component libraries. Either a BLM of the part must be created or other parts
must be used. It was also time consuming to create the custom-made geometries needed for the PCB
design using Librarian. It was difficult to make sure all geometries had the correct properties attached to
them so that the Layout tool worked cormrectly. Our design time was often hampered by system
administration work, such as the acquisition of new authorization codes from MG, Apollo system

maintenance, MG software updates, and installation of new Apollo DN3000 and DN4000 computers.

6. Conclusion

In this paper, we have described a procedure to realize a VLSI PCB design using CAD tools on
computer workstations. Creating the gate-level design on the computer workstation, simuiating the
functionality and timing of the gate-level design, packaging the design’s TTL parts into PCB parts,
placing and routing the PCB, creating manufacturing data, and PCB-level simulations were discussed.
We illustrated the CAD design process with a complete example, the VLSI-PLM PC Board. The design
of the VLSI-PLM PC Board was presented in detail. After overcoming many problems and limitations,



-18 -

we found the CAD methodology to be very efficient in our design of the VLSI-PLM PC Board. The
VLSI-PLM PC Board was designed to be 36.6 cm by 21.9 cm with the whole area taken up by the
board’s 106 PCB chips. The interface logic was actually constructed into a wire-wrapped board by the
Electronics Research Lab of the EECS Department. For comparison, the wire-wrapped VLSI-PLM
Board is 40 cm by 36 cm with 95 chips which cover 18 cm by 22 cm of the board.

Future work on the VLSI-PLM PC Board includes writing an efficient BLM for the VLSI-PLM
Chip, performing board-level simulations with this BLM, analyzing the simulation results, and comparing
the results to the DAS simulation results from the actual wire-wrapped board. After these procedures are
completed, the PCB manufacturing data can be used to fabricate the VLSI-PLM PC Board.

Acknowledgement

The VLSI-PLM Chip design was developed in the Aquarius project in the CS Division at the
University of California in Berkeley by a research team headed by Dr. Vason P. Srini. The wire-wrapped
version of the interface logic of the VLSI-PLM PC Board was designed by Dr. Srini and Lau T. Nguyen,
implemented and tested by Lau, Joao Wentcovitch, and Katherina Law. ‘'We are thankful to the members
of the Aquarius project, especially Tam Nguyen, for their help, comments, and suggestions.

This work was partially funded by the Defense Advance Research Projects Agency (DOD) and
monitored by Naval Electronics System Command under contract No. N00039-84-C-0089, NCR
Corporation, Dayton, Ohio, and National Science Foundation. Equipment and other support for the

project has been provided by DEC, NCR, Apollo, ESL, and Xenologic.

References

1. Mentor Graphics Corporation Software Documentation, Beaverton, Oregon, 1988.

2. Srini V.P, J.V. Tam, TM. Nguyen, B.K. Holmer, Y.N. Patt, AM. Despain, Design and

Implementation of a CMOS Chip for Prolog, Technical Report No. UCB/CSD 88/412, Computer Science
Division, EECS, University of California, Berkeley, California, March 1988.



-19-

3. Nguyen, L.T., L.G. Bushnell, and V.P. Srini, The VLSI-PLM Board: Design, Construction, and
Testing, Technical Report No. UCB/CSD 89/*, Computer Science Division, EECS, University of
California, Berkeley, California, January 1989.

* To be assigned



[oquAs preog Dd WId-ISTA 9 amS3rg

VLSIPLM BOARD

KPMO (31:6)
SHIFTA.B

CHCLK.B

FORCEADOA. P (8:8)
WAlT=.C

A{8:0)

B(0)

C8:8)

E(31:8)

F (27:0)
RS

H
El
NIACON

STRTCON
ATOMICm.C

LASTHI=.C
EXTERNALFUx.C

DASA

DASF

CHMCLK

DASSS

ORSOR

DRSON

DAST1

OAST2

ORASCSO

DASN

DASEL

DASSC

DASSI

DASCONT

DASOP (7: 8)
DRSMIRSIG (7:8)
DASMAA (27:8)
DASHEMDATBUS (31:8)

TTTTTTTITTIIITTIIT THILILALTTEL L

XIANAddV

-0~



e T IR U BE U

NI R

118

o
"

E = 3 - - -=

2 £ . H o ol

thesgtis — ==

icbE ii L +—

a s

‘—P“—m

° <

= o

.

b —

3 = %8 b B I - ety

tieiljiedazig b=
- « B g E s =
] P
i K3

HH U R T I

W R R

e Ho-o .
i Bg-cwrrnar
Ll
-y
Y ThES
wenis DO te.?
e rve BE)-Loer! P
wir B BT, P
wierownt
wirrone

VLSIPLM= ==

LU RLELL

l

o pen L e
= peit>0Cy Ve
o b tocste
- e Carsse
- ft>oC 380
W el 30C S
@ 0O
o b Dpacs
= b_gyiry
bl sase-Gindind
- R C
o D C0
- b ieate
o= e l>icete
bl amnceloi)
- e
e s b_3iCte
- o f—cy
——— b Orone
— S fa R
YRS G-ty
e = fee
- =l
s =l
. - Do
- -
- =
- [} -
- -
o eleOw
o l—Dw
- [ S
- al—o%
- ol-On
- oforn
" —on
® hpo0
= }—osi
-
ot e
e
Pect (1ot
H
]
i
] N

i
i

I

N

s R

Figure 7 VLSI-PLM PC Bozrd Schematic




DISPLAY_REGISTERS

MEMDATBUS.P (31:0)

MEL'E
o—nq-MHHBUS.Pj27:O)

[CS1x=

TN
o1 CS2*

ICS3x

.T [CSUx

ICS7x

O—I-N— ICS83&
20p——11CS59x

1 9YrrICs 10 DCI (7:0)

18 CS1x
T2
14——0Ccs2x

164——10CS3x
15¢——0CSY x

10quAg 15139y Agrdsiq g sm3ng

I4e—rgfoCS10%
13
o—m—-OCSHx
12.-T-N—ocs12*
lerN—OCSISx
~—l

DCO (7:0)

———RGx

o—nq—HLMDHx.P

_Zz_

DISPLAY_REGISTERS




-23-

I 133HS

<>1531

8501

—<65)1

1ﬁ 8is3l

(0'42) 4°SNaULN

Tre!

0130

< (911€) 4 °SNALLONIN

<>
0030

<M *=NOK W

—|||||I||°u_uua

<=21820

<1160
<01620

<>
81020

1811) [ IO mmmmmrsmgmpeeC) (8 4 1} 030

<] (8'16) 4"SNEIVONIN

prza

<>

—————————eeeeeee = 0520
<> (L0

<T$20

IS0 (51)) 030 gt C] (87 ) 130

<1821

<2601

~<={$31

_Illllo-nu_

'

90120

<3 (9°1€) 4 “ENEIVANIN

SY31S193Y Ly1dSId

Figure 9 Display Registers Schematic



[oquAs 19p033Q (1 amat]

PRSSNCLK  ICS2w
C 1c9e
CACHENISS  pone
DEDATAe  GPLOZ
crLtt srLos

It ®) s

£
2]
(1]
Asit
Mis
Lt
al
L1}
RO7
po8
ROS
A04
L2 )
RO2
L]

DECODOER
0CotTem

[ 41} L]
’KS12e
oCsiin
ocsiee
0CI9=
0cst=
0Cstn
0C%e
ocs
093
0CS2e
oCsin
icalte
1C310e
19
1CS0e
{21
1CaSe
1C%%

183«

sie
”"s
L)
1y
312
R 1Y)
e
"
se

”
"

s

DECODEN

_vz_



onewayds °podeq 1 am3td

£0C0(7:0)

oCI (7: 81 >—
- ‘
8317 ® }
0CSEs— A
i
TNFIE
c
0CS 1UsD>—
TWIN
B81(7:0) ‘ ;
0CS15a D>~ te 9
H T
*4
8
7 1
IFIN
vee
1€505>—
. 201(7:0)
A=
]

u

DooSOQ
Ry

UFITS

fe

] GPLIY

S PRSSHCLK

irevs

o

L

1€s11

=c o=

5

E®
ArKO——

AR

L3130

UL

AAAA
~ OV

5

TeL9139

2R

20
P it
CrTrixn)
wviAanannn
r————— O
NELNO—CON
ENERKAR

-7 -



-26-

5280

hay

[X4 ]

{44 ]
12d
a2y

Bid
oY

8ty
Ly

Ly
-]

e
64

Sty
o1y

hid
1y

(48]
el

s2eg0

Figure 12 DB25 Symbol



[0quILis J0109uuo;) 33pg €1 emSig

1200 SEAREEAARARSEARAEASARAREARNASERARARRAAARAEAI

COoNnug
CONNNTY
COoNNye
CONNYS
(LU
CONNY3S
COokRy2
CONNYY
CONNYS
CONN3S
Coxnd8
CONNI?
[<: L1} 1)
COKN3S
CONNN
COKNIY
CONN32

CONNUS
CONNSE
CONNS1
CONNS2
CONNSS
CONNSY
CONNSS
CONNSS
CONNS?
CONNSB
CONNSS
CaNNGe
CONNGL
CONNB2
CONNES
Cannse
CONNOS

CONKI1 & CONNGS
CONN38 [ CONNS?
CONN29 ' CONNED
CONN28 Z CoNNGS
coKN2? ™ CONNTS
CONN26 X CONNTL
CONN2S * CONNT2
CONN2Y & CONNTS

ConN23
CONNZ2
cokn2i
[+ LLE4 ]
CONN19
CONN1S
coxNt?
CONN1E
CONNES
COoNNiIN
CONN1Y
CONNIZ
COoNNLL
CONNE®
CONNS
CONNGE
CONNY
CONNG
CONNS
CONNY
CONRY
CONNZ
CONN1

CORNTY
CONN?S
CoNNTS
CONNTT
CONNTD
CONNTS
CONNDBS
CONNBY
CONNB2
Coines
CONNBY
CONNGS
CONNEES
CONNST
CoNnes
Coknes
CONNDS
CONNS1
CONNG2
CONNSS
CONNOY
COKNSS
CONNSS

ISR SRR 2R R R 2R R R RN RN AR IR

CONNIX32

..z-z:..



[vquis 10100uu0) NId ¢1 emadig

EASSSAAARARAAAAEAEARARARAEANEARASAGARARAAARAREAI

coxNue
CONNN?
CONNYE
CONNYS
CONNUY
CONNY3
COoNNY2
COKKYY
COXNU®
CONN3S
COoNN3S
CONNI?
CONN38
CONNIS
CONNM
CONN3Y
CoNN32

CaNNuS
CONNSS
CONNSY
CONNS2
CONNS3
CONNSY
CONNSS
CONNSE
CONNS?
CORNSY
CONNSS
CONNES
CONNB1
CONNE2
CONNBY
CONNBY
CONNBS

CONN3I1 & CONNGE
CONNIR J; CONNGTY
CONN29 Y CONNGS
CONN28B Z CoNNse
CONN27“ CONNT®

CONK26 X

CONNT

CONN2S * CONNT2
CONN2Y & CONNTS

CONN23
COoNN22
connat
CONNZe
CONNI S
coxxie
CONK1T
CONNLE
CoNNES
CoNxLg
CONNLI
COXNi2
CONNIY
conxie
CONNG
CONNE
CONND
CONNE
CONNS
CONNS
CONN3
CONNZ
CONX]

CONNTL
CONNTS
CONNTS
CONNYT?
CONNTS
CONNTD
ConNeD
CONNBYL
CONNe2
CONNB)Y
CONNEY
CONNBS
CoNnes
CONNBY
CoNNee
COoNNe®
CONNS®
CONNSY
CONNG2
CONNSY
CONNOR
COKNSS
CONNDS

TTTTTTIT IR IR T TR IR ITI LTI LA L 444 i 83 dddiiiiid

DINInI2

-E;Z:.-




1oquAs drgD) W1d-ISTA ST 2nd1g

I

—
z

bzl

I

—
z

l

b
-z

l

—
=z

|

|

—
=z

|

—
=z

OPCODE (7:0) DSPACE
RESETx EXCEPT
FORCEBA MEHDRT(31:0)<:
FORCEADDR (8:6) NEWP 1=
SHIFTA NEWP2x
ALMDR® FRIL
TESTI L S I P L M MEMREAD =
TEST2 MEMHRITER
MCLK INSTRENx
MCLKx LASTHIx
SHIFTINI EXTERNALF U=
SHIFTIN2 WATT
QUTMENDAT SHIFTOUTI
OUTRONADDR SHIFTOUT2

svlelplnchip MAR (27:0)

POWER (7: 0] GROUND (7: ©)

IR

ouT

ouT

ouT

10

ouT

ouT

ouT

_62_



joqruAg s30T sovprau] 91 mSBig

VLSIPLM_iNTERFACE_BORRD

EXCEPT.P
DSPACE.P
WAIT.P
EXTERNALFUN P
LASTMIw.P
MEMRERD®, P
[MEMWRITEm. P
FAILw.P

NEWP 1w, P
NEWP2n, P
SHIFTOUTL.P
SHIFTOUT2.P
INSTRENw, P
MARBUS. P (274 8)

RSTw.C

ORCEBR.C
SCY.C
SINST.C

ONTINUE.C
1BUFENPTY.C
CCLK.C
CHCLK.C

LTI L]

—
—]
PO
Gamearonn
Pt———
Qe
Gemamm—-]
Greriid
Gnnateand
]
P O—
@]
et KPMD (31 :8)
L
Gmemnncd
Qe
G
o]
—
e
L
—
—
—T
—

JOPCODE.C (7:8)
F ORCERDDA. C (84 8)
MEMDATBUS. C (313 8)

S13
1Y
515
516
517

POR®
SHIFTA.B
CMCLK.B
DCO (7:0)
GPLOL
GPLD2
0CS5=
0CSEx
0CS7w
OCS9w
1CS11n
ICS5m

RESET=.P
FOACEBR.P
OUTROMADOA. P
DUTMEMDRT.P
RLMDR=,P
TESTL.P
TEST2.P
SHIFTINI,P
SHIFTIN2.P
OPCODE.P (7:8!
FORCEADOA.P (8: @)
MEMDATBUS.P (31108)
SHIFTA
HCLK
MCLKw
ATOMICs.C
DSPACE.C
EXCEPT.C
INSTREN®.C
HENREADN.C
MENWRITE~.C
FAlLe.C
NENPIm.C
NEWP2=,.C
LASTMIw.C
EXTEANALFU=.C
WAlT=,C
MARBUS.C (27181
A1B«8)
B(7:8)
C16:8)
E31:8)

F(27:8)
RS

H
El
MIRCON

STRTCON
GEDATAm=

CACHEMISS
BPOINT
GPLI1
PASSMCLK

DCI(7:0)
L

0ASA

DASF

CMCLK

DRSS9

ORSOR

DASON

DAST1

DAST2

DASCSO

OASK

DASE1

DASSC

DASSI

ORSCONT

DRSOP (7:8)
DASHIASIG (7:8)
DASMAR (27: 8)
DASMEMDATBUS (31:8)

T T T TTTTTTTTT T T T T T T T T T T T T LT LT

_()E..



Jnewsyo3 213077 oeprAyy L] aundig

cil

j—— B . "":":_ BRabon. P
. e 10 S ForL bl Pz pee
SQD——D - = T PneR sc i ':‘:' .t‘:- §II.P
:30—: -_E conrsll:us A o -: E TR
=T == =
suiFTA = = S SEMETR= 15" wmem NENRERDN'P T
== L = " . Stetus
o TOKICw.C
1 e "
1 = e |
th =X EL.E
- 1
'R mf:”“u i(:
R Al = 1 B,
L a; et AT IELFU-.C NESINES PAISHCLK ) oanrra
rastiklk s e 1gfo s 178 PO == DCHCLK
1CS58D> e
rmoia____ R 1 TH: e mne [—DORCOE.F (.0)
m.unn-.:h -, '"":;:Béu]FIINL:F uchLKrép a :. e vam. ¢ —E_'::SJ,HEN-'C
A21m » .y A5t éﬁs:g_"'—
A i o £ T T AN e N
, e o el —>a(8:0)
B ST BEE'E?-- B momenf —ororctiom.r 00
pcotlriel o
MARBUS. P (271 8) D> e o ARBUS. € (27261

VLST-PLM INTERFACE_BOARD

13548RaR 27 @

—'[E_




i
" Figure 18 VLSI-PLM PC Board Layout

VLS IPLM_BOARD



advog WidISTIA

-33-

1

-—dllililililililiilldd

Iy

YERE

Il

o

I

112y

i1

T

Ll

Ml

14383

K ]

Fizure 19 Routed VLSI-PLM PC Board




-34=

1B

1k

I

b

eoin

- ==t J =

mr.mi.m.-.m

AN

- J m =

F‘mﬁh‘m b.m E.m

m P

— M

<l |s
LJELIGLIBLI= 3

: B

clls

8 &

7

otin
AN nnNnnn
REIRIIREIREIREIRELREIN
e =2
REREREIMEIREARERER
~aonnnnini
MERFIREIREIALIREIREIN
Nl ~Tl
pmrmpmpmpmﬁmpmp

—
o Qm —

E

1P

im

an

¥0IiN

k

201N

iean

4in

oin

] B

Tin

3

8in

siNn

ein

=
i

¥in

r

rork 1

C Board A

VLSI-

Fig






i

aoc00oDnNN0BAONO0B0000000R00N0D
00000000D0N0ONODDOUNDOOCG00OD0000
0000V ON0C000VDOOO0ADIBO0ROUR0E

0800000000000 80000080000000000
o0dC000H0DO00RSD000000R0D0COD0DDD
Q00000000 NCOODORO0GPOER0DOVO0RE

!

-36-

sssoosvees ey yTRNTT—YNETveesss ssssonovae

L ITITTYTT]) l.ﬂml!l [ TTI I 1T}
...ll..ﬂWu@N..l

*OTTIIINTygseaeses oo (TIITIT T Teacanes a3

+R-K- S A0 s | =§

suseuse o oa
..... I-¥-R-R-K . » B g o [ T XKL (. ¥ -]

° °o
sagprine sdna BT SNV SIS Tvosane aa

I TITTT D) scew sseo o

.ooc{M‘l\o“\l-unaaoco.

SoooooooDoae

ooaospEnpe =g= §§E
L X-5-1L-1 1 I ] %E §§§

csasssscas ::j::.

noonoooo‘qg

oORGODORA0OOCRORNRDOARNLANGORDORED

Jcogosesce’ | oss | l
YYY I it o . 2 5-1-%-2-F 213 MBoaggoggogg 2 o

: o OANADALANE bossapovon euwheo:! ggp
: a : sosoaanovn L5 -1-1-1-1-1-EE—— Y
—
-

[ o ]
[

::::;‘. obesFoanao ooMeaD ) ;;
- ”"!”“:::::: v

b, I i

s E sccsaaoowe uwgﬂ:m‘_,ea §§

E E °%g224# © avoacoovos asosesce coo I@EE
E E - ..(.°;;ﬁ‘§°°““°£°. .Olmu__:._

)

oo Q280008 GaNjoBBUSO DOGOGOODOEW
ssonocgove osoova OQUCORRDCO nonhfmnc
v °* 5000000 -séﬁmgngpa-o-
S acgoone ocdocacooom g o830 ___psooagpascse

wouo L CTTTTIT] !

aqn!'l'r'l'!:n.no seas . E

LLUS-T-0-T I YT a-k-2-v 112713 1 ToUOTwe »

}-* .:GDD'. LX) a Iﬂﬂﬂﬂ'. :
seapoegg 4080000 eodocoe eaQo00e

oocoocecasy
[ I 111117}

sesoens m..: :,5’3:

soons a———M_h-“'*_/ S

L)
L LRl L] ] 02088 S LI 12 17 ]] aaocgsecoobe

Figure 22 VLSI-PLM PC Board Artwork 3



-3/

[4 ¢ 1%

HINOLSND
WIANN ON 1A “ON ROSd 1ALLDY NO1S3q |
Buhouq uo|309 |44 BoLSX
paoog Od id-ISA 30
sun | _tipuysng opu(]
ava NA
ess) ‘'or Asonuop
OM_1ayniMoo —— wek 907 | 09200 o
3ONYEI10L | G31Vd | INWJ | 3ZIS 310H | 108jAS 310H
ayvosg }Jn_ ISTA
L]
-] -]
" _

T00'0¥959°9

ORI LGP VOO0 U SEDINY NI POOOSE ° o SDOOILVEIE L LUSSEIIRESSTLVIVVVLRY o
QUL IIIEYESSOPISSIVDRPEERE: svod

ot
foomes  sessbzemss Irufeesssad seseconte .
=l o
S :"""‘";""l" o

N
- === 4=y

TOO‘OFIEY Y}

AR S R R

Figure 23 VLSI-PLMPC Board Fabrication Drawing



_

/4

sl wEnMM&HEhIILHHM
WIIWNN ONIA “ON §osd JZIS

1ALLYY NS |

Suimeiqg Ajquoassy

_Nnisxa |

pIsod Od WIdISTA .,

686} ‘0z Auonuor

P
o |
|apuyeng Bpury

NAYWO

*ON_1OYNINOO

-38~

ayyog NdISTIA

TOO " 0¥SSO° 9 1 0N

R ]

-

] E
B ]

)
| I
s

an
| T |
yon
| J—
™
| 2 |
oin

o

1)

00

J L

L)A
| J—
=

] 3
n

e J
)

| J— |
5A

E B |
a

| Z—
oen

s0in

]

oy
a J ™1 I g M
LIS LIS LIRL) S LI BL
i -
uﬂgn
LB SLIGLIELIG L) 8L
Cnnnnn
JELIELIELIELISLISL
rmrmrmﬁm-m-ﬁp

=]
- R —
4

e

Z00' 0¥ )SY ¥}

7iN

Figure 24 VLSI-PLM PC Board Assembly Draw:ng




